# week 9 Homework question>>>>>>>>>>xoon only

MAT540

Week 9 Homework

Chapter 5

1. The Livewright Medical Supplies Order has a completion of 12 salespeople it wants to advance to three countrys – the South, the East, and the Midwest.   A salesperson in the South earns \$600 in gain per month of the order, a salesperson in the East earns \$540, and a salesperson in the Midwest earns \$375. The southern country can possess a utmost advancement of 5 salespeople.  The order has a completion of \$750 per day conducive for expenses for all 12 salespeople.  A salesperson in the South has medium expenses of \$80 per day, a salesperson in the East has medium expenses of \$70 per day, and a salesperson in the Midwest has medium daily expenses of \$50.  The order wants to state the estimate of salespeople to advance to each country to maximize gain.

1. Formulate an integer programming mould for this amount

2. Solve this mould by using the computer.

1. Solve the aftercited adulterated integer straight programming mould by using the computer:

Maximize Z = 5 x1 + 6 x2 + 4 x3

Subject to

5 x1 + 3 x2 + 6 x3 ≤ 20

x1 + 3 x2    12

x1, x3    0

x2    0 and integer

1. The Texas Consolidated Electronics Order  is contemplating a lore and product program encompassing eight lore schemes.  The order is compact from embarking on all schemes by the estimate of conducive treatment scientists (40) and the budget conducive for R&D schemes (\$300,000).  Further, if scheme 2 is clarified, scheme 5 must so be clarified (but not fault versa).  Following are the supplies requirements and the estimated gain for each scheme.

Project

Expense (\$1,000s)

Management Scientists required

Estimated Profit

(1,000,000s)

1

\$  60

7

\$0.36

2

110

9

0.82

3

53

8

0.29

4

47

4

0.16

5

92

7

0.56

6

85

6

0.61

7

73

8

0.48

8

65

5

0.41

Formulate the integer programming mould for this amount and rereunfold it using the computer.

1. During the war after a while Iraq in 1991, the Terraco Motor Order done a lightweight, all-terrain conveyance code-named “J99-Terra” for the soldierly.  The order is now schemening to vend the Terra to the disclosed.  It has five places that composition the conveyance and indecent countryal arrangement centers.  The order is unsure of dissecretive insist for the Terra, so it is regarding reducing its agricultural liberal absorbs by stagnation one or over places, flush though it would meet an acception in conveyance absorbs.  The pertinent absorbs for the amount are supposing in the aftercited consideration.  The conveyance absorbs are per thousand conveyances shipped;  for sample, the absorb of shipping 1,000 conveyances from place 1 to warehouse C is \$32,000.

From Plant

Transportation Costs (\$1000s)

to Warehouse

Annual Production Capacity

Annual Agricultural Liberal Costs

A

B

C

D

1

\$56

\$21

\$32

\$65

12,000

\$2,100,000

2

18

46

7

35

18,000

850,000

3

12

71

41

52

14,000

1,800,000

4

30

24

61

28

10,000

1,100,000

5

45

50

26

31

16,000

900,000

Annual

Demand

6,000

14,000

8,000

10,000

Formulate and rereunfold an integer programming mould for this amount to aid the order in determining which places should dwell dissecretive and which should be secretive and the estimate of conveyances that should be shipped from each scheme to each warehouse to minimize completion absorb.